feat: 抽离AI请求为hooks
This commit is contained in:
parent
c3950fd4c7
commit
c8f251a4a2
51
src/hooks/useAIRequest.ts
Normal file
51
src/hooks/useAIRequest.ts
Normal file
@ -0,0 +1,51 @@
|
||||
import { useState } from 'react';
|
||||
import useAddress from './useAddress';
|
||||
|
||||
interface AIRequestOptions {
|
||||
model?: string;
|
||||
maxTokens?: number;
|
||||
systemPrompt?: string;
|
||||
}
|
||||
|
||||
const useAIRequest = () => {
|
||||
const [loading, setLoading] = useState(false);
|
||||
const { NewAPiAddress } = useAddress();
|
||||
|
||||
const sendRequest = async (content: any, options: AIRequestOptions = {}) => {
|
||||
setLoading(true);
|
||||
try {
|
||||
const response = await fetch(`${NewAPiAddress}/v1/chat/completions`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
'Authorization': 'Bearer sk-mw9ekhJlSj3GeGiw0hLRSHlwdkDFst8q6oBfQrW0L15QilbY'
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model: options.model || 'gpt-4o-mini',
|
||||
messages: [
|
||||
{
|
||||
role: 'system',
|
||||
content: options.systemPrompt || '你是一个智能助手,请根据用户输入进行分析并给出专业的见解。'
|
||||
},
|
||||
{
|
||||
role: 'user',
|
||||
content
|
||||
}
|
||||
],
|
||||
max_tokens: options.maxTokens || 2000
|
||||
})
|
||||
});
|
||||
|
||||
const data = await response.json();
|
||||
return data.choices[0].message.content;
|
||||
} catch (error) {
|
||||
throw error;
|
||||
} finally {
|
||||
setLoading(false);
|
||||
}
|
||||
};
|
||||
|
||||
return { loading, sendRequest };
|
||||
};
|
||||
|
||||
export default useAIRequest;
|
5
src/hooks/useAddress.tsx
Normal file
5
src/hooks/useAddress.tsx
Normal file
@ -0,0 +1,5 @@
|
||||
const useAddress = () => {
|
||||
const NewAPiAddress = "https://openai.933999.xyz"
|
||||
return {NewAPiAddress};
|
||||
}
|
||||
export default useAddress;
|
@ -6,6 +6,7 @@ import type { UploadFile } from 'antd/es/upload/interface';
|
||||
import Mermaid from '@/components/Mermaid';
|
||||
import MonacoEditor from '@/components/MonacoEditor';
|
||||
import html2canvas from 'html2canvas';
|
||||
import useAIRequest from '@/hooks/useAIRequest';
|
||||
|
||||
const { Dragger } = Upload;
|
||||
const { TabPane } = Tabs;
|
||||
@ -28,7 +29,6 @@ const CodeAnalysisPage: React.FC = () => {
|
||||
const [codeContent, setCodeContent] = useState<string>('');
|
||||
const [activeTab, setActiveTab] = useState<string>('editor');
|
||||
|
||||
// 处理代码编辑
|
||||
const handleCodeChange = (value: string) => {
|
||||
setCodeContent(value);
|
||||
};
|
||||
@ -43,7 +43,7 @@ const CodeAnalysisPage: React.FC = () => {
|
||||
|
||||
const canvas = await html2canvas(chartElement, {
|
||||
useCORS: true,
|
||||
scale: 2, // 提高导出图片质量
|
||||
scale: 2,
|
||||
backgroundColor: '#ffffff'
|
||||
});
|
||||
|
||||
@ -62,26 +62,16 @@ const CodeAnalysisPage: React.FC = () => {
|
||||
}
|
||||
};
|
||||
|
||||
// 处理代码分析
|
||||
const { loading: aiLoading, sendRequest } = useAIRequest();
|
||||
|
||||
const handleAnalyze = async () => {
|
||||
if (!codeContent.trim()) {
|
||||
message.warning('请输入或上传代码');
|
||||
return;
|
||||
}
|
||||
setLoading(true);
|
||||
|
||||
try {
|
||||
const response = await fetch('https://openai.933999.xyz/v1/chat/completions', {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
'Authorization': 'Bearer sk-mw9ekhJlSj3GeGiw0hLRSHlwdkDFst8q6oBfQrW0L15QilbY'
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model: 'gpt-4o-mini',
|
||||
messages: [
|
||||
{
|
||||
role: 'user',
|
||||
content: [
|
||||
const content = await sendRequest([
|
||||
{
|
||||
type: 'text',
|
||||
text: analysisType === 'er'
|
||||
@ -92,20 +82,9 @@ const CodeAnalysisPage: React.FC = () => {
|
||||
type: 'text',
|
||||
text: codeContent
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
max_tokens: 2000
|
||||
})
|
||||
});
|
||||
]);
|
||||
|
||||
const data: AnalysisResponse = await response.json();
|
||||
const content = data.choices[0].message.content;
|
||||
|
||||
// 解析返回的内容,提取 mermaid 图表代码和分析建议
|
||||
const [diagramPart, analysisPart] = content.split('分析建议:').map(part => part.trim());
|
||||
|
||||
// 提取 mermaid 代码块
|
||||
const mermaidCode = diagramPart.match(/```mermaid\n([\s\S]*?)\n```/)?.[1] || diagramPart;
|
||||
|
||||
setDiagramCode(mermaidCode);
|
||||
@ -115,27 +94,24 @@ const CodeAnalysisPage: React.FC = () => {
|
||||
} catch (error) {
|
||||
console.error('分析失败:', error);
|
||||
message.error('分析失败,请重试');
|
||||
} finally {
|
||||
setLoading(false);
|
||||
}
|
||||
};
|
||||
|
||||
// 处理文件上传
|
||||
const handleUpload = async (file: File) => {
|
||||
setLoading(true);
|
||||
try {
|
||||
// 读取文件内容
|
||||
const reader = new FileReader();
|
||||
reader.onload = (e) => {
|
||||
const content = e.target?.result as string;
|
||||
setCodeContent(content);
|
||||
setActiveTab('editor');
|
||||
message.success('文件上传成功');
|
||||
};
|
||||
reader.readAsText(file);
|
||||
return false; // 阻止默认上传行为
|
||||
} catch (error) {
|
||||
message.error('文件读取失败');
|
||||
console.error('文件读取失败:', error);
|
||||
}
|
||||
setLoading(false);
|
||||
};
|
||||
|
||||
return (
|
||||
@ -176,7 +152,7 @@ const CodeAnalysisPage: React.FC = () => {
|
||||
>
|
||||
<Button>上传文件</Button>
|
||||
</Dragger>
|
||||
<Button type="primary" onClick={handleAnalyze} loading={loading}>
|
||||
<Button type="primary" onClick={handleAnalyze} loading={aiLoading}>
|
||||
开始分析
|
||||
</Button>
|
||||
</Space>
|
||||
|
@ -28,6 +28,7 @@ import ReactECharts from 'echarts-for-react';
|
||||
import styles from './index.less';
|
||||
import * as XLSX from 'xlsx';
|
||||
import { marked } from 'marked';
|
||||
import useAIRequest from '@/hooks/useAIRequest';
|
||||
|
||||
const { Dragger } = Upload;
|
||||
const { TextArea } = Input;
|
||||
@ -105,6 +106,8 @@ const AnalysisCenter: React.FC = () => {
|
||||
messagesEndRef.current?.scrollIntoView({ behavior: 'smooth' });
|
||||
};
|
||||
|
||||
const { loading: aiLoading, sendRequest } = useAIRequest();
|
||||
|
||||
const handleSend = async () => {
|
||||
if (!inputValue.trim()) return;
|
||||
|
||||
@ -119,22 +122,7 @@ const AnalysisCenter: React.FC = () => {
|
||||
setLoading(true);
|
||||
|
||||
try {
|
||||
const response = await fetch('https://openai.933999.xyz/v1/chat/completions', {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
'Authorization': 'Bearer sk-mw9ekhJlSj3GeGiw0hLRSHlwdkDFst8q6oBfQrW0L15QilbY'
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model: 'gpt-4o-mini',
|
||||
messages: [
|
||||
{
|
||||
role: 'system',
|
||||
content: '你是一个数据分析专家,请根据用户输入进行分析并生成分析报告和 ECharts 图表配置。图表配置需要包含在 ```json 代码块中。'
|
||||
},
|
||||
{
|
||||
role: 'user',
|
||||
content: [
|
||||
const content = await sendRequest([
|
||||
{
|
||||
type: 'text',
|
||||
text: `请对以下内容进行${analysisOptions.find(opt => opt.value === analysisType)?.label},并给出专业的分析见解。
|
||||
@ -147,18 +135,14 @@ const AnalysisCenter: React.FC = () => {
|
||||
|
||||
分析内容:${inputValue}`
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
max_tokens: 2000
|
||||
})
|
||||
], {
|
||||
systemPrompt: '你是一个数据分析专家,请根据用户输入进行分析并生成分析报告和 ECharts 图表配置。图表配置需要包含在 ```json 代码块中。'
|
||||
});
|
||||
|
||||
const result = await response.json();
|
||||
let chartOption;
|
||||
|
||||
try {
|
||||
const matches = result.choices[0].message.content.match(/```json\n([\s\S]*?)\n```/);
|
||||
const matches = content.match(/```json\n([\s\S]*?)\n```/);
|
||||
if (matches && matches[1]) {
|
||||
chartOption = JSON.parse(matches[1]);
|
||||
}
|
||||
@ -169,7 +153,7 @@ const AnalysisCenter: React.FC = () => {
|
||||
|
||||
const assistantMessage: Message = {
|
||||
type: 'assistant',
|
||||
content: result.choices[0].message.content.replace(/```json\n[\s\S]*?\n```/g, '').trim(),
|
||||
content: content.replace(/```json\n[\s\S]*?\n```/g, '').trim(),
|
||||
timestamp: Date.now(),
|
||||
charts: chartOption,
|
||||
};
|
||||
@ -181,7 +165,7 @@ const AnalysisCenter: React.FC = () => {
|
||||
message.error('分析请求失败');
|
||||
setLoading(false);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
const handleFileAnalysis = async (file: File) => {
|
||||
|
@ -8,6 +8,7 @@ import styles from './index.less';
|
||||
import { Document, Packer, Paragraph as DocxParagraph, TextRun } from 'docx';
|
||||
import { saveAs } from 'file-saver';
|
||||
import * as XLSX from 'xlsx';
|
||||
import useAIRequest from '@/hooks/useAIRequest';
|
||||
|
||||
const { Dragger } = Upload;
|
||||
const { TextArea } = Input;
|
||||
@ -96,37 +97,22 @@ const ReportPage: React.FC = () => {
|
||||
}
|
||||
};
|
||||
|
||||
const { loading: aiLoading, sendRequest } = useAIRequest();
|
||||
|
||||
const analyzeData = async (content: any) => {
|
||||
setLoading(true);
|
||||
try {
|
||||
const response = await fetch('https://openai.933999.xyz/v1/chat/completions', {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
'Authorization': 'Bearer sk-mw9ekhJlSj3GeGiw0hLRSHlwdkDFst8q6oBfQrW0L15QilbY'
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model: 'gpt-4o-mini',
|
||||
messages: [
|
||||
{
|
||||
role: 'user',
|
||||
content: [
|
||||
const result = await sendRequest([
|
||||
{
|
||||
type: 'text',
|
||||
text: '请分析这些数据的趋势和关键信息,并给出专业的分析见解。'
|
||||
},
|
||||
content
|
||||
]
|
||||
}
|
||||
],
|
||||
max_tokens: 1000
|
||||
})
|
||||
});
|
||||
|
||||
const data: AnalysisResponse = await response.json();
|
||||
]);
|
||||
|
||||
setPreviewData({
|
||||
columns: ['分析结果'],
|
||||
data: [[data.choices[0].message.content]]
|
||||
data: [[result]]
|
||||
});
|
||||
|
||||
message.success('数据分析成功');
|
||||
@ -139,6 +125,37 @@ const ReportPage: React.FC = () => {
|
||||
}
|
||||
};
|
||||
|
||||
const generateReport = async () => {
|
||||
try {
|
||||
const result = await sendRequest([
|
||||
{
|
||||
type: 'text',
|
||||
text: `请基于以下分析目标和数据,生成一份详细的markdown格式分析报告,包含标题、概述、详细分析等章节:${goal}\n${previewData?.data[0][0]}`
|
||||
}
|
||||
], {
|
||||
maxTokens: 2000
|
||||
});
|
||||
|
||||
// 解析 markdown 内容
|
||||
const titleMatch = result.match(/^#\s+(.+)$/m);
|
||||
const title = titleMatch ? titleMatch[1] : '数据分析报告';
|
||||
|
||||
setReportData({
|
||||
title,
|
||||
summary: '',
|
||||
sections: [],
|
||||
charts: [],
|
||||
markdown: result
|
||||
});
|
||||
|
||||
setWordUrl('https://example.com/report.docx');
|
||||
message.success('报告生成成功');
|
||||
setCurrentStep(2);
|
||||
} catch (error) {
|
||||
message.error('报告生成失败');
|
||||
}
|
||||
};
|
||||
|
||||
const generateWordDocument = async (markdown: string) => {
|
||||
const doc = new Document({
|
||||
sections: [
|
||||
@ -186,57 +203,6 @@ const handleDownload = async () => {
|
||||
}
|
||||
};
|
||||
|
||||
const generateReport = async () => {
|
||||
setLoading(true);
|
||||
try {
|
||||
const response = await fetch('https://openai.933999.xyz/v1/chat/completions', {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
'Authorization': 'Bearer sk-mw9ekhJlSj3GeGiw0hLRSHlwdkDFst8q6oBfQrW0L15QilbY'
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model: 'gpt-4o-mini',
|
||||
messages: [
|
||||
{
|
||||
role: 'user',
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: `请基于以下分析目标和数据,生成一份详细的markdown格式分析报告,包含标题、概述、详细分析等章节:${goal}\n${previewData?.data[0][0]}`
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
max_tokens: 2000
|
||||
})
|
||||
});
|
||||
|
||||
const data: AnalysisResponse = await response.json();
|
||||
const markdownContent = data.choices[0].message.content;
|
||||
|
||||
// 解析 markdown 内容
|
||||
const titleMatch = markdownContent.match(/^#\s+(.+)$/m);
|
||||
const title = titleMatch ? titleMatch[1] : '数据分析报告';
|
||||
|
||||
setReportData({
|
||||
title,
|
||||
summary: '',
|
||||
sections: [],
|
||||
charts: [],
|
||||
markdown: markdownContent
|
||||
});
|
||||
|
||||
setWordUrl('https://example.com/report.docx');
|
||||
message.success('报告生成成功');
|
||||
setCurrentStep(2);
|
||||
} catch (error) {
|
||||
message.error('报告生成失败');
|
||||
} finally {
|
||||
setLoading(false);
|
||||
}
|
||||
};
|
||||
|
||||
const renderPreview = () => {
|
||||
if (!previewData) return null;
|
||||
return (
|
||||
|
Loading…
x
Reference in New Issue
Block a user